Math 210B Lecture 26 Notes

Daniel Raban

March 13, 2019

1 Integral Extensions and Integral Closure

1.1 Towers of integral extensions

Proposition 1.1. Let $B = A[\beta_1, \ldots, \beta_n]$. The following are equivalent.

- 1. B is integral over A.
- 2. Each β_i is integral over A.
- 3. B is finitely generated as an A-module.

Proof. (1) \implies (2): This is by definition.

(2) \implies (3): Recall the lemma that if *B* is a finitely generated *A*-module and *M* is a finitely generated *B*-module, then *M* is a finitely generated *A*-module. So it is enough to show (by recursion) that $A[\beta_1, \ldots, \beta_{j+1}]$ is finitely generated over $A[\beta_1, \ldots, \beta_j]$ for all $0 \le j \le k - 1$. So we reduce to the case $B = A[\beta]$, where β is integral over *A*. By a proposition from last time, *B* is finitely generated over *A*.

(3) \implies (1): *B* is a faithful *B*-module, and it is finitely generated over *A*. Take $\beta \in B$. Then *B* is an $A[\beta]$ -submodule of *B* that is faithful and finitely generated over *A*, so β is integral over *A* (by the same proposition from last time).

Proposition 1.2. If B/A and C/B are integral, then so is C/A.

Proof. Let $\gamma \in C$. There exists a monic $f \in B[x]$ with γ as a root. Let B' be the A-subalgebra of B generated by the coefficients of f. By the previous proposition, B' is finitely generated as an A-module. Then $B'[\gamma]/B'$ is integral, so $B[\gamma]$ is finitely generated as a B' module. Then $B'[\gamma]$ is finitely generated as an A-module. Then $B'[\gamma]$ is finitely generated as an A-module. Thus, γ is integral over A.

1.2 Integral closure

Definition 1.1. The integral closure of A in B is the subset of elements in B integral over A.

Proposition 1.3. The integral closure of A in B is an A-subalgebra of B.

Proof. Look at $A[\alpha, \beta]$, where $\alpha, \beta \in B$ are integral over A. This is integral over A. So $\alpha - \beta$ and $\alpha\beta$ are integral over A.

Example 1.1. The integral closure of \mathbb{Z} in \mathbb{Q} is \mathbb{Z} .

Example 1.2. The integral closure of \mathbb{Z} in $\mathbb{Z}[x]$ is \mathbb{Z} .

Example 1.3. The integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{2})$ is $\mathbb{Z}[\sqrt{2}]$.

Definition 1.2. The ring of integers O_K of a number field K is the integral closure of \mathbb{Z} in K.

Remark 1.1. Integral closure as we have defined it is not absolute. It is relative to the larger ring B.

Definition 1.3. A domain A is **integrally closed** if it is its own integral closure in its quotient field.

Example 1.4. \mathbb{Z} is integrally closed.

Example 1.5. Any field is integrally closed.

So this is not the same notion as algebraically closed.

Proposition 1.4. Let A be an integrally closed domain (resp. UFD). Let K = Q(A), and let L/K be a field extension. If $\beta \in L$ is integral over A with minimal polynomial $f \in K[x]$, then $f \in A[x]$.

Proof. Let A be integrally closed. Let $g \in A[x]$ be monic, having β as a root. Then $f \mid g$ in K[x]. Every root of g in \overline{K} (algebraic closure) is integral over A. In $\overline{K}[x]$, $f(x) = \prod_{i=1}^{n} (x - \beta_i)$, where the β_i are integral over A. So all coefficients of f are integral over A and are in K. So $f \in A[x]$, as A is integrally closed.

Let A be a UFD. There exists a $d \in K$ such that $df \mid g$ (since A is a UFD). f is monic, so $d \in A$. g is monic, so $d \in A^{\times}$. So $f \in A[x]$.

Corollary 1.1. UFDs are integrally closed.

Proof. Let A be a UFD, and let $a \in K = Q(A)$ be integral over A. $x - a \in K[x]$ is the minimal polynomial. By the proposition, $x - a \in A[x]$. So $a \in A$.

Example 1.6. $\mathbb{Z}[\sqrt{17}]$ is not integrally closed. $\alpha = (1 + \sqrt{17})/2$ satisfies $x^2 - x - 4$. So $\mathbb{Z}[\sqrt{17}]$ is not a UFD.

Proposition 1.5. The integral closure of an integral domain A in an integrally closed extension B/A is integrally closed.

Proof. Let \overline{A} be the integral closure of A in B. Let $Q = Q(\overline{A})$ be the quotient field of \overline{A} . Let $\alpha \in Q$ be integral over \overline{A} . $\overline{A}[\alpha]/\overline{A}$ is integral (by a previous proposition). Also, \overline{A}/A is integral, so $\overline{A}[\alpha]/A$ is integral. So α is integral over A, and $\alpha \in B$, so $\alpha \in \overline{A}$.

Example 1.7. Let $\overline{\mathbb{Z}}$, the algebraic integers, be the integral closure of \mathbb{Z} in $\overline{\mathbb{Q}} \subseteq \mathbb{C}$. Then $\overline{\mathbb{Z}}$ is integrally closed.

Example 1.8. Let $K \subseteq \overline{\mathbb{Q}}$ be a number field. Then the ring of integers, $O_K = \overline{Z} \cap K$, is integrally closed.

Proposition 1.6. Let A be an integrally closed domain with quotient field K. Let L be an algebraic extension of K. Then the integral closure of B of A in L has quotient field L.

In fact, if $\beta \in L$, then $\beta = b/d$ with $b \in B$, $d \in A$.

Proof. Let $\beta \in L$ be a root of $f = \sum_{i=0}^{n} a_i x_i \in K[x]$, where $a_n = 1$. Let $d \in A \setminus \{0\}$ be such that $df \in A[x]$. Consider $g = d^N f(d^{-1}x) = \sum_{i=0}^{n} d^{n-i}a_i x^i \in A[x]$ is monic, and $g(d\beta) = 0$. So $d\beta \in B$. Since $b := d\beta \in B$, $\beta = b/d$.

Theorem 1.1. Let d > 1 be squarefree.

$$O_{\mathbb{Q}(\sqrt{d})} = \begin{cases} \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & d \equiv 1 \pmod{4} \\ \mathbb{Z}[\sqrt{d}] & d \equiv 2, 3 \pmod{4} \end{cases}$$

Proof. Let $\alpha = a + b\sqrt{d} \in O_{\mathbb{Q}(\sqrt{d})}$, where $a, b \in \mathbb{Q}$. If b = 0, then $a \in \mathbb{Z}$. If $b \neq 0$, then α has a minimal polynomial $f = x^2 - 2ax + (a^2 - b^2d)$. α is integral, so $f \in \mathbb{Z}[x]$. So $2a \in \mathbb{Z}$. We have 2 cases:

1. If $a \in \mathbb{Z}$, then $b^2 d \in \mathbb{Z}$. This implies $b \in \mathbb{Z}$, since d is squarefree.

2. If $a \notin \mathbb{Z}$, then $2a = a', 2b = b' \in \mathbb{Z}$, where a', b' are odd. Then $a^2 - b^2 - d = \frac{(a')^2 - (b')^2 d}{4} \in \mathbb{Z}$. So $(a')^2 \equiv (b')^2 d \pmod{4}$. The only squares in $\mathbb{Z}/4\mathbb{Z}$ are 0 and 1. So $f \equiv 1 \pmod{4}$. In this case, check that $\frac{1+\sqrt{d}}{2}$ is integral.