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1 Integral Extensions and Integral Closure

1.1 Towers of integral extensions

Proposition 1.1. Let B = A[β1, . . . , βn]. The following are equivalent.

1. B is integral over A.

2. Each βi is integral over A.

3. B is finitely generated as an A-module.

Proof. (1) =⇒ (2): This is by definition.
(2) =⇒ (3): Recall the lemma that if B is a finitely generated A-module and M is

a finitely generated B-module, then M is a finitely generated A-module. So it is enough
to show (by recursion) that A[β1, . . . , βj+1] is finitely generated over A[β1, . . . , βj ] for all
0 ≤ j ≤ k − 1. So we reduce to the case B = A[β], where β is integral over A. By a
proposition from last time, B is finitely generated over A.

(3) =⇒ (1): B is a faithful B-module, and it is finitely generated over A. Take β ∈ B.
Then B is an A[β]-submodule of B that is faithful and finitely generated over A, so β is
integral over A (by the same proposition from last time).

Proposition 1.2. If B/A and C/B are integral, then so is C/A.

Proof. Let γ ∈ C. There exists a monic f ∈ B[x] with γ as a root. Let B′ be the A-
subalgebra of B generated by the coefficients of f . By the previous proposition, B′ is
finitely generated as an A-module. Then B′[γ]/B′ is integral, so B[γ] is finitely generated
as a B′ module. Then B′[γ] is finitely generated as an A-module. Thus, γ is integral over
A. So C is integral over A.
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1.2 Integral closure

Definition 1.1. The integral closure of A in B is the subset of elements in B integral
over A.

Proposition 1.3. The integral closure of A in B is an A-subalgebra of B.

Proof. Look at A[α, β], where α, β ∈ B are integral over A. This is integral over A. So
α− β and αβ are integral over A.

Example 1.1. The integral closure of Z in Q is Z.

Example 1.2. The integral closure of Z in Z[x] is Z.

Example 1.3. The integral closure of Z in Q(
√

2) is Z[
√

2].

Definition 1.2. The ring of integers OK of a number field K is the integral closure of
Z in K.

Remark 1.1. Integral closure as we have defined it is not absolute. It is relative to the
larger ring B.

Definition 1.3. A domain A is integrally closed if it is its own integral closure in its
quotient field.

Example 1.4. Z is integrally closed.

Example 1.5. Any field is integrally closed.

So this is not the same notion as algebraically closed.

Proposition 1.4. Let A be an integrally closed domain (resp. UFD). Let K = Q(A), and
let L/K be a field extension. If β ∈ L is integral over A with minimal polynomial f ∈ K[x],
then f ∈ A[x].

Proof. Let A be integrally closed. Let g ∈ A[x] be monic, having β as a root. Then
f | g in K[x]. Every root of g in K (algebraic closure) is integral over A. In K[x],
f(x) =

∏n
i=1(x− βi), where the βi are integral over A. So all coefficients of f are integral

over A and are in K. So f ∈ A[x], as A is integrally closed.
Let A be a UFD. There exists a d ∈ K such that df | g (since A is a UFD). f is monic,

so d ∈ A. g is monic, so d ∈ A×. So f ∈ A[x].

Corollary 1.1. UFDs are integrally closed.

Proof. Let A be a UFD, and let a ∈ K = Q(A) be integral over A. x − a ∈ K[x] is the
minimal polynomial. By the proposition, x− a ∈ A[x]. So a ∈ A.
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Example 1.6. Z[
√

17] is not integrally closed. α = (1 +
√

17)/2 satisfies x2 − x − 4. So
Z[
√

17] is not a UFD.

Proposition 1.5. The integral closure of an integral domain A in an integrally closed
extension B/A is integrally closed.

Proof. Let A be the integral closure of A in B. Let Q = Q(A) be the quotient field of A.
Let α ∈ Q be integral over A. A[α]/A is integral (by a previous proposition). Also, A/A
is integral, so A[α]/A is integral. So α is integral over A, and α ∈ B, so α ∈ A.

Example 1.7. Let Z, the algebraic integers, be the integral closure of Z in Q ⊆ C. Then
Z is integrally closed.

Example 1.8. Let K ⊆ Q be a number field. Then the ring of integers, OK = Z ∩K, is
integrally closed.

Proposition 1.6. Let A be an integrally closed domain with quotient field K. Let L be an
algebraic extension of K. Then the integral closure of B of A in L has quotient field L.

L

B

K

A

In fact, if β ∈ L, then β = b/d with b ∈ B, d ∈ A.

Proof. Let β ∈ L be a root of f =
∑n

i=0 aixi ∈ K[x], where an = 1. Let d ∈ A\{0} be such
that df ∈ A[x]. Consider g = dNf(d−1x) =

∑n
i=0 d

n−iaix
i ∈ A[x] is monic, and g(dβ) = 0.

So dβ ∈ B. Since b := dβ ∈ B, β = b/d.

Theorem 1.1. Let d > 1 be squarefree.

OQ(
√
d) =

{
Z[1+

√
d

2 ] d ≡ 1 (mod 4)

Z[
√
d] d ≡ 2, 3 (mod 4).

Proof. Let α = a + b
√
d ∈ OQ(

√
d), where a, b ∈ Q. If b = 0, then a ∈ Z. If b 6= 0, then α

has a minimal polynomial f = x2− 2ax+ (a2− b2d). α is integral, so f ∈ Z[x]. So 2a ∈ Z.
We have 2 cases:

1. If a ∈ Z, then b2d ∈ Z. This implies b ∈ Z, since d is squarefree.
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2. If a /∈ Z, then 2a = a′, 2b = b′ ∈ Z, where a′, b′ are odd. Then a2 − b2 − d =
(a′)2−(b′)2d

4 ∈ Z. So (a′)2 ≡ (b′)2d (mod 4). The only squares in Z/4Z are 0 and 1.

So f ≡ 1 (mod 4). In this case, check that 1+
√
d

2 is integral.
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