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1 Integral Extensions and Integral Closure

1.1 Towers of integral extensions

Proposition 1.1. Let B = A[f1, ..., Bn]. The following are equivalent.
1. B is integral over A.
2. Each B; is integral over A.
3. B is finitely generated as an A-module.

Proof. (1) = (2): This is by definition.

(2) = (3): Recall the lemma that if B is a finitely generated A-module and M is
a finitely generated B-module, then M is a finitely generated A-module. So it is enough
to show (by recursion) that A[f1,...,Bj4+1] is finitely generated over A[f,..., ;] for all
0 <j <k-—1. So we reduce to the case B = A[f], where [ is integral over A. By a
proposition from last time, B is finitely generated over A.

(3) = (1): B is a faithful B-module, and it is finitely generated over A. Take 8 € B.
Then B is an A[f]-submodule of B that is faithful and finitely generated over A, so f is
integral over A (by the same proposition from last time). O

Proposition 1.2. If B/A and C/B are integral, then so is C/A.

Proof. Let v € C. There exists a monic f € B[z| with v as a root. Let B’ be the A-
subalgebra of B generated by the coefficients of f. By the previous proposition, B’ is
finitely generated as an A-module. Then B’[y]/B’ is integral, so B[y] is finitely generated
as a B’ module. Then B'[v] is finitely generated as an A-module. Thus, + is integral over
A. So C'is integral over A. O



1.2 Integral closure

Definition 1.1. The integral closure of A in B is the subset of elements in B integral
over A.

Proposition 1.3. The integral closure of A in B is an A-subalgebra of B.

Proof. Look at Ala, 5], where «, 8 € B are integral over A. This is integral over A. So
o — 8 and af are integral over A. O

Example 1.1. The integral closure of Z in Q is Z.
Example 1.2. The integral closure of Z in Z[z] is Z.
Example 1.3. The integral closure of Z in Q(v/2) is Z[v/2].

Definition 1.2. The ring of integers O of a number field K is the integral closure of
Zin K.

Remark 1.1. Integral closure as we have defined it is not absolute. It is relative to the
larger ring B.

Definition 1.3. A domain A is integrally closed if it is its own integral closure in its
quotient field.

Example 1.4. Z is integrally closed.
Example 1.5. Any field is integrally closed.
So this is not the same notion as algebraically closed.

Proposition 1.4. Let A be an integrally closed domain (resp. UFD). Let K = Q(A), and
let L/K be a field extension. If B € L is integral over A with minimal polynomial f € K|z],
then f € Alz].

Proof. Let A be integrally closed. Let g € Alzx] be monic, having 5 as a root. Then
f | g in K[z]. Every root of g in K (algebraic closure) is integral over A. In K|[x],
f(x) =TI, (x — B;), where the f5; are integral over A. So all coefficients of f are integral
over A and are in K. So f € Alx], as A is integrally closed.

Let A be a UFD. There exists a d € K such that df | g (since Aisa UFD). f is monic,
sod € A. g is monic, so d € A*. So f € Alz]. O

Corollary 1.1. UFDs are integrally closed.

Proof. Let A be a UFD, and let a € K = Q(A) be integral over A. x —a € K]Jz] is the
minimal polynomial. By the proposition, 2 — a € A[z]. So a € A. O



Example 1.6. Z[\/17] is not integrally closed. a = (1 ++/17)/2 satisfies 22 — x — 4. So
Z[/17] is not a UFD.

Proposition 1.5. The integral closure of an integral domain A in an integrally closed
extension B/A is integrally closed.

Proof. Let A be the integral closure of A in B. Let Q = Q(A) be the quotient field of A.
Let o € @ be integral over A. Ala]/A is integral (by a previous proposition). Also, A/A
is integral, so A[a]/A is integral. So « is integral over A, and a € B, so a € A. O

Example 1.7. Let 7Z, the algebraic integers, be the integral closure of Z in Q C C. Then
Z is integrally closed.

Example 1.8. Let K C Q be a number field. Then the ring of integers, O = Z N K, is
integrally closed.

Proposition 1.6. Let A be an integrally closed domain with quotient field K. Let L be an
algebraic extension of K. Then the integral closure of B of A in L has quotient field L.
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In fact, if B € L, then B =0b/d with b € B, d € A.

Proof. Let § € L bearootof f =>"" a;z; € K[z], where a, = 1. Let d € A\ {0} be such
that df € A[z]. Consider g = dV f(d~'z) = > I ,d"‘a;x" € A[z] is monic, and g(dB) = 0.
So df € B. Since b:=dj € B, § = b/d. 0

Theorem 1.1. Let d > 1 be squarefree.

o B Z[1+2\/3] d=1 (mod 4)
WD T\ zlvd  d=23 (mod 4).

Proof. Let a = a+ bVd € OQ(\/@, where a,b € Q. If b =0, then a € Z. If b # 0, then «
has a minimal polynomial f = 2?2 — 2az + (a® — bd). « is integral, so f € Z[z]. So 2a € Z.
We have 2 cases:

1. If a € Z, then b*d € Z. This implies b € Z, since d is squarefree.



2. If a ¢ Z, then 2a = d/,2b = V' € Z, where o/,b' are odd. Then a® — b? — d =
\2 /)2

W € 7Z. So (a’)? = (V)2d (mod 4). The only squares in Z/4Z are 0 and 1.

So f =1 (mod 4). In this case, check that # is integral. O
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